Establishment of Motor Neuron-V3 Interneuron Progenitor Domain Boundary in Ventral Spinal Cord Requires Groucho-Mediated Transcriptional Corepression

نویسندگان

  • Keith J. Todd
  • Nathalie Lan-Chow-Wing
  • Adele Salin-Cantegrel
  • Anthony Cotter
  • Chrissandra J. Zagami
  • Rita Lo
  • Stefano Stifani
چکیده

BACKGROUND Dorsoventral patterning of the developing spinal cord is important for the correct generation of spinal neuronal types. This process relies in part on cross-repressive interactions between specific transcription factors whose expression is regulated by Sonic hedgehog. Groucho/transducin-like Enhancer of split (TLE) proteins are transcriptional corepressors suggested to be recruited by at least certain Sonic hedgehog-controlled transcription factors to mediate the formation of spatially distinct progenitor domains within the ventral spinal cord. The aim of this study was to characterize the involvement of TLE in mechanisms regulating the establishment of the boundary between the most ventral spinal cord progenitor domains, termed pMN and p3. Because the pMN domain gives rise to somatic motor neurons while the p3 domain generates V3 interneurons, we also examined the involvement of TLE in the acquisition of these neuronal fates. METHODOLOGY AND PRINCIPAL FINDINGS A combination of in vivo loss- and gain-of-function studies in the developing chick spinal cord was performed to characterize the role of TLE in ventral progenitor domain formation. It is shown here that TLE overexpression causes increased numbers of p3 progenitors and promotes the V3 interneuron fate while suppressing the motor neuron fate. Conversely, dominant-inhibition of TLE increases the numbers of pMN progenitors and postmitotic motor neurons. CONCLUSION Based on these results, we propose that TLE is important to promote the formation of the p3 domain and subsequent generation of V3 interneurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vsx1 Transiently Defines an Early Intermediate V2 Interneuron Precursor Compartment in the Mouse Developing Spinal Cord

Spinal ventral interneurons regulate the activity of motor neurons, thereby controlling motor activities. Interneurons arise during embryonic development from distinct progenitor domains distributed orderly along the dorso-ventral axis of the neural tube. A single ventral progenitor population named p2 generates at least five V2 interneuron subsets. Whether the diversification of V2 precursors ...

متن کامل

Probing the Locomotor Conundrum: Descending the ‘V’ Interneuron Ladder

The assembly of neuronal circuits involved in locomotor control in the mammalian spinal cord is influenced by genetic programs specifying four ventral (V) interneuron populations (V0-V3). In this issue of Neuron, Crone et al. and Zhang et al. make use of genetic tools to map connectivity patterns and to abolish the function of V2a and V3 interneurons. The absence of V2a interneurons reveals def...

متن کامل

Mir-17-3p Controls Spinal Neural Progenitor Patterning by Regulating Olig2/Irx3 Cross-Repressive Loop

Neural patterning relies on transcriptional cross-repressive interactions that ensure unequivocal assignment of neural progenitor identity to proliferating cells. Progenitors of spinal motor neurons (pMN) and V2 interneurons (p2) are specified by a pair of cross-repressive transcription factors, Olig2 and Irx3. Lineage tracing revealed that many p2 progenitors transiently express the pMN marker...

متن کامل

Identification of Multiple Subsets of Ventral Interneurons and Differential Distribution along the Rostrocaudal Axis of the Developing Spinal Cord

The spinal cord contains neuronal circuits termed Central Pattern Generators (CPGs) that coordinate rhythmic motor activities. CPG circuits consist of motor neurons and multiple interneuron cell types, many of which are derived from four distinct cardinal classes of ventral interneurons, called V0, V1, V2 and V3. While significant progress has been made on elucidating the molecular and genetic ...

متن کامل

Different Levels of Repressor Activity Assign Redundant and Specific Roles to Nkx6 Genes in Motor Neuron and Interneuron Specification

Specification of neuronal fate in the vertebrate central nervous system depends on the profile of transcription factor expression by neural progenitor cells, but the precise roles of such factors in neurogenesis remain poorly characterized. Two closely related transcriptional repressors, Nkx6.2 and Nkx6.1, are expressed by progenitors in overlapping domains of the ventral spinal cord. We provid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012